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SUMMARY

This paper addresses the problem of tuning the input and the output parameters of a fuzzy logic controller.
A novel technique that combines Q(�)-learning with function approximation (fuzzy inference system) is
proposed. The system learns autonomously without supervision or a priori training data. The proposed
technique is applied to three different pursuit–evasion differential games. The proposed technique is
compared with the classical control strategy, Q(�)-learning only, and the technique proposed by Dai
et al. (2005) in which a neural network is used as a function approximation for Q-learning. Computer
simulations show the usefulness of the proposed technique. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fuzzy logic controllers (FLCs) are currently being used in engineering applications [1, 2] especially
for plants that are complex and ill-defined [3, 4] and plants with high uncertainty in the knowledge
about its environment such as autonomous mobile robotic systems [5, 6]. However, FLCs have a
drawback of finding its knowledge base which is based on a tedious and unreliable trial and error
process. To overcome this drawback, one can use supervised learning [7–11] that needs a teacher
or input/output training data. However, in many practical cases the model is totally or partially
unknown and it is difficult or expensive and in some cases impossible to get training data. In such
cases. It is preferable to use a method such as reinforcement learning (RL).

RL is a computational approach to learning through interaction with the environment [12, 13].
The main advantage of RL is that it does not need either a teacher or a known model. RL is
suitable for intelligent robot control especially in the field of autonomous mobile robots [14–18].

Limited studies have applied RL alone to solve environmental problems, but its use with other
learning algorithms has increased. In [19], a RL approach is used to tune the parameters of a
FLC. This approach is applied to a single case of one robot following another along a straight
line. In [15, 20], the authors proposed a hybrid learning approach that combines a neuro-fuzzy
system with RL in a two-phase structure applied to an obstacle avoidance mobile robot. In phase
1, supervised learning is used to tune the parameters of an FLC; then in phase 2, RL is employed
so that the system can re-adapt to a new environment. The limitation in their approach is that if the
training data are hard or expensive to obtain, then supervised learning cannot be applied. In [21],
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the authors overcame this limitation by using Q-learning as an expert to obtain training data. Then
the training data are used to tune the weights of an artificial neural network (NN) controller applied
to a mobile robot path-planning problem.

In this work, we are interested in the pursuit–evasion differential game since it can be considered
as a general problem for many other robotic problems such as obstacle avoidance, leader–follower,
path-planning and wall-following problems. In addition, it is useful for many real-world applications
including surveillance and tracking, search and rescue, locating and capturing hostile and localizing
and neutralizing environmental threads. In [22], a multi-robot pursuit–evasion game is investigated.
The model consists of a combination of aerial and ground vehicles. However, the unmanned
vehicles are not learning. They just do the actions they receive from a central computer system.
In [23], a hierarchical software structure for a multi-player pursuit–evasion game is proposed.
However, the robots do not learn or adapt to the changing environment. In [24], the use of RL
in the multi-agent pursuit–evasion problem is discussed. The individual agents learn a particular
pursuit strategy. However, the authors do not use a realistic robot model or robot control structure.
In [25], RL is used to tune the output parameters of an FLC in a pursuit–evasion game.

The problem assigned in this paper is that we assume that the pursuer/evader does not know its
control strategy. It is not told which actions to take so as to be able to optimize its control strategy.
We assume that we do not even have a simplistic PD controller strategy [10, 11]. The learning
goal is to make the pursuer/evader able to self-learn its control strategy. It should do that online
by interaction with the evader/pursuer.

In this work, we are not interested in deriving the optimal control strategy.We focus on adaptively
learning and designing FLCs online when the expert or the training data are not available. From
several learning techniques, we choose RL. RL methods learn without a teacher, without anybody
telling them how to solve the problem. RL is related to problems where the learning agent does
not know what it must do. It is the most appropriate learning technique for our problem.

However, using RL alone has a limitation in that the RL method is designed only for discrete
state–action spaces. Since we want to use RL in the robotics domain which is a continuous domain,
then we need to use some types of function approximation such as fuzzy inference systems (FISs)
to generalize the discrete state–action space into a continuous state–action space. Therefore, from
the RL point of view, an FIS is used as a function approximation to compensate for the limitation
in RL. And from the FIS point of view, RL is used to tune the input and/or the output parameters
of the FIS. In this case, the FIS is used as an adaptive controller whose parameters are tuned online
by RL. Therefore, combining RL and FIS has two objectives, to compensate for the limitation in
RL and to tune the parameters of the FLC.

A number of papers used FIS as a function approximation with Q-learning [26–28]. However,
these works have the following disadvantages: (i) the action space is considered to be discrete and
(ii) only the output parameters of the FIS are tuned.

In this paper, we propose a novel technique called Q(�)-learning fuzzy inference system (QLFIS).
The proposed QLFIS, which combines Q(�)-learning with FIS, is used directly with the continuous
state–action spaces. In addition, it is used to tune the input and the output parameters of the FLC.
The learning process in the proposed QLFIS is performed simultaneously. The FIS is used as a
function approximation to estimate the optimal action-value function, Q∗(s,a), in the continuous
state and action space while Q(�)-learning is used to tune the input and the output parameters of
both the FIS and the FLC.

The proposed technique is applied to three different pursuit–evasion differential games. We
start with a simple pursuit–evasion game in which only the pursuer self-learns its control strategy
online while the evader plays a simple classical control strategy. In the second game, we make
the evader play an intelligently control strategy by exploiting the advantage of its higher maneu-
verability during the game. Finally, we increase the complexity of the system by assuming
both the pursuer and the evader do not know their control strategies or the other’s control
strategy.

This paper is organized as follows: some basic terminologies for RL and FIS are reviewed in
Sections 2 and 3, respectively. In Section 4, the pursuit–evasion game is described. The proposed
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QLFIS technique is described in Section 5. Section 6 presents the computer simulation and the
results are discussed in Section 7. Finally, conclusion is pointed out in Section 8.

2. REINFORCEMENT LEARNING

Agent–environment interaction in RL is shown in Figure 1 [12]. It consists mainly of two blocks,
an agent which tries to take actions so as to maximize a discounted return, R, and an environment
which provides the agent with rewards. The discounted return, Rt , at time t is defined as

Rt =
�∑

k=0
�krt+k+1 (1)

where rt+1 is the immediate reward, � is the discount factor (0<��1) and � is the terminal
point. Any task can be divided into independent episodes and � is the end of an episode. If � is
finite, then the model is called a finite-horizon model [13]. If �→∞, then the model is called an
infinite-horizon discounted model and in this case �<1 to avoid infinite total rewards.

The performance of an action, a, taken in a state, s, under policy, �, is evaluated by the action
value function, Q�(s,a),

Q�(s,a)= E�(Rt |st = s,at =a)

= E�

( ∞∑
k=0

�krk+t+1|st = s,at =a

)
(2)

where E�(·) is the expected value under policy, �. The RL method searches for the optimal policy,
�∗, by searching for the optimal value function, Q∗(s,a) where

Q∗(s,a)=max
�

Q�(s,a) (3)

Many methods have been proposed for estimating the optimal value functions. Here, we focus on
the temporal difference (TD) method. The TD method has several control algorithms. The most
widely used and well-known control algorithm is Q-learning [29].

Q-learning, which was first introduced by Watkins in his PhD [30], is an off-policy algorithm.
This means that it has the ability to learn without following the current policy. The state and
action spaces are discrete and their corresponding value function is stored in what is known as a
Q-table. To use Q-learning with continuous systems (continuous state and action spaces), one can
discretize the state and action spaces [21, 31–36] or use some type of function approximation such
as FISs [26–28], NNs [12, 19, 37], or use some type of optimization technique such as genetic
algorithms [38, 39].

A one-step update rule for Q-learning is defined as

Qt+1(st ,at )=Qt (st ,at )+��t (4)

reward
r

state
s

r

s

action 
a

Figure 1. Agent–environment interaction in RL.
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where � is the learning rate (0<��1) and �t is the temporal difference error (TD-error) defined as

�t =rt+1+�max
á∈A

Qt (st+1, á)−Qt (st ,at ) (5)

where á is the action that satisfies the maximum operator. Equation (4) updates the value function
according to the immediate reward obtained from the environment. To update the value function
based on a multi-step update rule, one can use eligibility traces [12]. Eligibility traces are used to
modify a one-step TD algorithm, TD(0), to be a multi-step TD algorithm, TD(�). The eligibility
trace for the continuous state and action spaces is defined as

et =��et−1+ �Qt (st ,at )

��
(6)

where e0=0, � is the trace-decay parameter (0���1) and � is the parameter to be tuned. Eligibility
traces are used to speed up the learning process and hence to make it suitable for online applications.
Now we will modify (4) to be

Qt+1(s,a)=Qt (s,a)+��t et (7)

3. FUZZY INFERENCE SYSTEM

The most widely used FIS model is Takagi–Sugeno–Kang (TSK) [40]. A first-order TSK means
that the output is a linear function of its inputs, whereas a zero-order TSK means that the output
is a constant function. In this work, a zero-order TSK model is used.

A Rule used in zero-order TSK models for N inputs has the form

Rl : IF x1 is Al
1 AND . . . AND xN is Al

N THEN fl =Kl (8)

where Al
i is fuzzy set of the i th input variable, xi , in rule Rl , l=1,2, . . . , L and Kl is the consequent

parameter of the output, fl , in rule Rl . The fuzzy output can be defuzzified into a crisp output
using one of the defuzzification techniques. Here, the weighted average method is used and is
defined as follows:

f (x̄)=
∑L

l=1

(∏N
i=1�Ali (xi )

)
Kl∑L

l=1

(∏N
i=1�Ali (xi )

) (9)

where �Ali (xi ) is the membership value for the fuzzy set Al
i of the input xi in rule Rl . Owing to its

simple formulas and computational efficiency, Gaussian membership function (MF) has been used
extensively especially in real-time implementation and control. The Gaussian MF is defined as

�Ali (xi )=exp

⎛
⎝−

(
xi −ml

i

	li

)2
⎞
⎠ (10)

where 	 and m are the standard deviation and the mean, respectively.
The structure of the FIS used in this work is shown in Figure 2. Without loss of generality,

we assume that the FIS model has 2 inputs, x1 and x2, and one output, f . Each input has three
Gaussian MFs. The structure has two types of nodes. The first type is an adaptive node (a squared
shape) whose output needs to be adapted (tuned) and the second type is a fixed node (a circled
shape) whose output is a known function of its inputs.

The structure has five layers. In layer 1, all nodes are adaptive. This layer has six outputs denoted
by O1. The output of each node in layer 1 is the membership value of its input defined by (10). In
layer 2, all nodes are fixed. The AND operation (multiplication) between the inputs of each rule

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
DOI: 10.1002/acs



Q(�)-LEARNING ADAPTIVE FLCS

Layer 4 

Layer 5 

f

1x2x

Layer 3 Layer 2 

1A

4A

3A

2A1x

2x

Layer 1 

5A

6A

Figure 2. Structure of an FIS model.

is calculated in this layer. This layer has nine outputs denoted by O2
l , l=1,2, . . . ,9. The output

of each node in layer 2, 
l , is known as the firing strength of the rule. It is calculated as follows:

O2
l =
l =

2∏
i=1

�Ali (xi ) (11)

In layer 3, all nodes are fixed. This layer has nine outputs denoted by O3
l . The output of each

node in layer 3 is the normalized firing strength, 
l , which is calculated as follows:

O3
l =
l =

O2
l∑9

l=1 O
2
l

= 
l∑9
l=1 
l

(12)

In layer 4, all nodes are adaptive. The defuzzification process is performed in this layer and the
next layer. Layer 4 has nine outputs denoted by O4

l . The output of each node is

O4
l =O3

l Kl =
l Kl (13)

Layer 5 is the output layer and has only one fixed node whose output, f , is the sum of all its
inputs as follows:

O5= f =
9∑

l=1
O4
l =

9∑
l=1


l Kl (14)

which is the same as (9).
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4. PURSUIT–EVASION DIFFERENTIAL GAME

The pursuit–evasion differential game is one application of differential games [41] in which a
pursuer tries to catch an evader in minimum time where the evader tries to escape from the pursuer.
The pursuit–evasion model is shown in Figure 3. This model is known as the game of two cars
[41]. Equations of motion for the pursuer/evader robot are [42]

ẋi = Vi cos(�i )

ẏi = Vi sin(�i )

�̇i = Vi
Li

tan(ui )

(15)

where ‘i’ is ‘p’ for the pursuer and is ‘e’ for the evader, (xi , yi ) is the position of the robot, Vi
is the velocity, �i is the orientation, Li is the wheelbase, and ui is the steering angle where ui ∈
[−uimax,uimax]. The minimum turning radius of the robot is calculated as

Rdimin = Li

tan(uimax)
(16)

Our scenario is to make the pursuer faster than the evader (Vp>Ve), but at the same time to
make it less maneuverable than the evader (upmax<uemax ). The classical control strategy that we
compare with our results is defined as

ui =

⎧⎪⎨
⎪⎩

−uimax : �i<−uimax

�i : −uimax��i�uimax

uimax : �i>uimax

(17)

where

�i = tan−1
(
ye− yp
xe−xp

)
−�i (18)

The capture occurs when the distance between the pursuer and the evader is less than a certain
amount, �. This amount is called the capture radius, which is defined as

�=
√
(xe−xp)2+(ye− yp)2 (19)

In the simple pursuit–evasion game described by (17) and (18), the robots are simulated with
only knowledge of the angle of the line of sight (LOS) to the other robot. As such, the optimal
solution in this case is for each robot to try and make the angle of the LOS zero and we refer

x

y

The pursuer 

The evader 

( xp , yp ) 

( xe , ye ) 
Vp

p

e

Ve

Figure 3. Pursuit–evasion model.
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to this as the ‘classical’ strategy. In Section 7, we will demonstrate how the learning algorithms
will achieve this goal. In Section 7, we will also show the case when the evader has knowledge of
closing distance and therefore the evader will turn and take advantage of its higher maneuverability.
Once again, we will demonstrate how the pursuer will be able to learn to turn as well.

One reason for choosing the pursuit–evasion game is that the optimal control strategy for a
simple game can be determined. Therefore, it can be used as a reference for our results. In this
way, we can check the validity of our proposed technique.

5. THE PROPOSED QLFIS

An FIS is used as a function approximation for Q(�)-learning to generalize the discrete state and
action spaces into continuous state and action spaces and at the same time Q(�)-learning is used
to tune the parameters of the FIS and the FLC. The structure of the proposed QLFIS is shown in
Figure 4 which is a modified version of the proposed techniques used in [19, 25].

The difference between the proposed QLFIS and that proposed in [25] is that in [25], the authors
used FIS to approximate the value function, V (s), but the proposed QLFIS is used to approximate
the action–value function, Q(s,a). In addition in [25], the authors tune only the output parameters
of the FIS and the FLC, whereas in this work the input and the output parameters of the FIS
and the FLC are tuned. The reason for choosing Q-learning in our work is that it outperforms the
actor-critic learning [43]. The main advantage of Q-learning over actor-critic learning is exploration
insensitivity, since Q-learning is an off-policy algorithm (see Sections 2) whereas actor-critic
learning is an on-policy algorithm.

The difference between the proposed QLFIS and that proposed in [19] is that in [19], the authors
used NNs as a function approximation, but here we use the FIS as a function approximation. There
are some advantages of using FIS rather than NNs such that: (i) linguistic fuzzy rules can be
obtained from human experts [44] and (ii) the ability to represent fuzzy and uncertain knowledge
[45]. In addition, our results show that the proposed QLFIS outperforms the technique proposed
in [19] in both the learning time and the performance.

Now we will derive the adaptation laws for the input and the output parameters of the FIS and
the FLC. The adaptation laws will be derived only once and are applied for both the FIS and the
FLC. Our objective is to minimize the TD-error, �t , and by using the mean square error we can
formulate the error as

E= 1
2�

2
t (20)

We use the gradient descent approach and according to the steepest descent algorithm, we make
a change along the negative gradient to minimize the error; hence,

�(t+1)=�(t)−

�E
��

(21)

FIS

FLC Environment 

Figure 4. The proposed QLFIS technique.
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where 
 is the learning rate and � is the parameter vector of the FIS and the FLC, where
�= [	,m,K ]. The parameter vector, �, is to be tuned. From (20) we get

�E
��

=�t
��t

��
(22)

Then from (5),

�E
��

=−�t
�Qt (st ,ut )

��
(23)

Substituting in (21), we get

�(t+1)=�(t)+
�t
�Qt (st ,ut )

��
(24)

We can obtain �Qt (st ,ut )/�� for the output parameter, Kl , from (14), where f is Qt (st ,ut ) for
the FIS and f is u for the FLC, as follows

�Qt (st ,ut )

�Kl
=
l (25)

Then we can obtain �Qt (st ,ut )/�� for the input parameters, 	li and ml
i , based on the chain rule,

�Qt (st ,ut )

�	li
= �Qt (st ,ut )

�
l

�
l

�	li
(26)

�Qt (st ,ut )

�ml
i

= �Qt (st ,ut )

�
l

�
l

�ml
i

(27)

The term �Qt (st ,ut )/�
l is calculated from (14) and (12). The terms �
l/�	li and �
l/�ml
i are

calculated from both (11) and (10); hence

�Qt (st ,ut )

�	li
= (Kl −Qt (st ,ut ))∑

l 
l

l

2(xi −ml
i )
2

(	li )
3

(28)

�Qt (st ,ut )

�ml
i

= (Kl −Qt (st ,ut ))∑
l 
l


l
2(xi −ml

i )

(	li )
2

(29)

Substituting from (25), (28) and (29) into (6) and modifying (24) to use eligibility trace, then the
update law for the FIS parameters becomes

�Q(t+1)=�Q(t)+
�t et (30)

The update law in (24) is applied also to the FLC by replacing Qt (st ,ut ) with the output of the
FLC, u. In addition and as shown from Figure 4, a random Gaussian noise, n(0,	n), with zero mean
and a standard deviation 	n is added to the output of the FLC to solve the exploration/exploitation
dilemma as for example the �-greedy exploration method used in the discrete state–action space.
Therefore, the update law for the FLC parameters is defined as

�u(t+1)=�u(t)+��t
�u
��

(
uc−u

	n

)
(31)

where uc is the output of the random Gaussian noise generator and � is the learning rate for the
FLC parameters. The term �u/�� can be calculated by replacing Qt (st ,ut ) with the output of the
FLC, u, in (25), (28), and (29).
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p
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+
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robot
FLC
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d

Figure 5. Block diagram of an FLC system.

5.1. Fuzzy logic controller

A block diagram of an FLC system is shown in Figure 5. The FLC has two inputs, the error in
the pursuer angle, �p, defined in (18), and its derivative, �̇p, and the output is the steering angle,
up. We use the Gaussian MFs for the inputs of the FLC. We also modify (8) to be

Rl : IF �p is Al
1 AND �̇p is Al

2 THEN fl =Kl (32)

where l=1,2, . . . ,9. The crisp output, up, is calculated using (9) as follows:

up=
∑9

l=1

(∏2
i=1�Ali (xi )

)
Kl∑9

l=1

(∏2
i=1�Ali (xi )

) (33)

5.2. Constructing the reward function

How to choose the reward function is very important in RL, because the agent depends on the
reward function in updating its value function. The reward function differs from one system to
another according to the desired task. In our case, the pursuer wants to catch the evader in minimum
time. In other words, the pursuer wants to decrease its distance to the evader at each time step.
The distance between the pursuer and the evader at time t is calculated as follows:

D(t)=
√
(xe(t)−xp(t))2+(ye(t)− yp(t))2 (34)

The difference between two successive distances, �D(t), is calculated as

�D(t)=D(t)−D(t+1) (35)

A positive value of �D(t) means that the pursuer approaches the evader. The maximum value of
�D(t) is defined as

�Dmax=VrmaxT (36)

where Vrmax is the maximum relative velocity (Vrmax=Vp+Ve) and T is the sampling time. Hence,
we choose the reward, r , to be

rt+1= �D(t)

�Dmax
(37)

6. COMPUTER SIMULATION

We use an INTEL CORE 2 DUO computer with a 2.0 GHz clock frequency and 4.0GB of RAM.
We do computer simulation with MATLAB software. Q(�)-learning has many parameters to be
set a priori; therefore, we tested computer simulation for different parameter values and different
parameter value combinations and chose the values that give the best performance. The initial
position of the evader is randomly chosen from a set of 64 different positions in the space.

We test the proposed technique in three cases. In case 1, the evader is constrained to use a simple
control strategy (as the one used in [35]). The control strategy that is used by the evader is to run
away from the pursuer along the LOS. In case 2, the evader uses a control strategy that makes
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use of its higher maneuverability (as the one used in [11, 46]). From the learning point of view,
case 2 is the same as case 1 in which only the pursuer learns its control strategy. The reason for
simulating case 2 is to show that even if the evader takes advantage of its higher maneuverability,
the pursuer will still be able to learn to catch the evader.

Case 3 is different from case 1 and case 2 where we move on from learning in a single robot
system to learning in a multi-robot system. In this case, both the pursuer and the evader learn
their control strategies. In this case, the evader cannot learn to use the advantage of its higher
maneuverability because the inputs to the FLC of the evader consists of the error in the angle of
the LOS and its derivative and not the distance between the robots. As such the evader has no
information on which to base a potential turning action. Therefore, the evader cannot learn how or
when to turn. However, in future work, we will include position as an input to the FLC and then
we hypothesize that the evader will then learn how and when to turn.

In our work, we want to show that our proposed technique (when it is compared with the others)
is the closest technique to the classical control strategy. Given that the inputs to the evader are
only the angle of the LOS and its rate of change, then the ‘classical’ strategy is also the ‘optimal’
strategy. Therefore, if we succeed in learning the ‘classical’ strategy, in this particular case, then
the robots have also learned the ‘optimal’ strategy for this case.

6.1. The pursuit–evasion game

The pursuer starts motion from the position (0,0) with an initial orientation �p=0 and with a
constant velocity Vp=2m/s. The wheelbase Lp=0.3m and the steering angle up∈ [−0.5,0.5].
From (16), Rdpmin �0.55m.

The evader starts motion from a random position for each episode with an initial orientation
�e=0 and with a constant velocity Ve=1.0m/s, which is half that of the pursuer (slower). The
wheelbase Le=0.3m and the steering angle ue∈ [−1,1], which is twice that of the pursuer (more
maneuverable). From (16), Rdemin �0.19m which is about one third that of the pursuer. The
duration of a game is 60 s. The game ends when 60 s passed without capturing or when the capture
occurs before the end of this time. The capture radius �=0.10m. The sampling time is set to 0.1 s.

6.2. The proposed QLFIS

We choose the number of episodes (games) to be 1000, the number of plays (steps) in each episode
to be 600, �=0.95, and �=0.9. We make the learning rate for the FIS, 
, decrease with each
episode such that


=0.1−0.09

(
i

Max. Episodes

)
(38)

and also make the learning rate for the FLC, �, decrease with each episode such that

�=0.01−0.009

(
i

Max. Episodes

)
(39)

where i is the current episode. Note that the value of 
 is 10 times the value of � i.e. the FIS
converges faster than the FLC to avoid instability in tuning the parameters of the FLC. We choose
	n =0.08.

6.3. Compared techniques

To validate the proposed QLFIS technique, we compare its results with the results of the classical
control strategy, Q(�)-learning only and the technique proposed in [19]. The classical control
strategies of the pursuer and the evader are defined by (17) and (18). The parameters of Q(�)-
learning only have the following values: the number of episodes is set to 1000, the number of
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plays in each episode to 6000, �=0.5, and �=0.3. We make the learning rate, �, decrease with
each episode such that

�=
(
1

i

)0.7

(40)

We also make ε decrease with each episode such that

ε= 0.1

i
(41)

where i is the current episode.
For the technique proposed in [19], we choose the same values for the parameters of the NN.

The NN has a three-layer structure with 7-21-1 nodes. The RL parameters and the initial values
of the input and the output parameters of the FLC are all chosen to be the same as those chosen
in the proposed QLFIS. We choose 	n =0.1, which decreases each episode by 1/ i where i is the
current episode.

7. RESULTS

Figure 6 and Table I show the input and the output parameters of the FLC after tuning using
the proposed QLFIS, respectively where ‘N’, ‘Z’, and ‘P’ are referred to the linguistic values
‘Negative’, ‘Zero’, and ‘Positive’.

Table II shows the capture times for different initial positions of the evader using the classical
control strategy of the pursuer, the Q(�)-learning only, the proposed QLFIS and the technique
proposed in [19]. In addition, the learning times for the different techniques are also shown in this
table. From Table II we can see that although the Q(�)-learning only has the minimum learning
time, it is not enough to get the desired performance in comparison with the classical control
strategy and the other techniques. The proposed QLFIS outperforms the technique proposed in
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Figure 6. MFs for the inputs after tuning using the proposed QLFIS:
(a) the input �p and (b) the input �̇p.

Table I. Fuzzy decision table after tuning using the proposed QLFIS.

�̇p

N Z P

�p N −0.5452 −0.2595 −0.0693
Z −0.2459 0.0600 0.2299
P 0.0235 0.3019 0.5594
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Table II. Capture time, in seconds, for different evader initial positions and learning time, in seconds, for
the different techniques (case 1).

Evader initial position
Learning

(−6,7) (−7,−7) (2,4) (3,−8) time

Classical control strategy 9.6 10.4 4.5 8.5 —
Q(�)-learning only 12.6 15.6 8.5 11.9 32.0
Technique proposed in [19] 10.9 12.9 4.7 9.1 258.6
Proposed QLFIS 10.0 10.7 4.6 8.8 65.2

[19] in both performance and learning time and both of them have better performance than using
the Q(�)-learning only. We can also see that the proposed QLFIS takes only 65.2 s in the learning
process, which is about 25% of the learning time taken by the technique proposed in [19].

Note that in the previous game, the evader uses a simple control strategy. Now we will use
another version of the pursuit–evasion game in which we will make use of the advantage of the
maneuverability of the evader during the game. Equations of motion for the pursuer and the evader
are modified to be [11, 46]

ẋi = vi cos(�i )

ẏi = vi sin(�i )

�̇i = vi

Li
tan(ui )

(42)

where vi is the velocity of the robot which is governed by the steering angle, to avoid slips, such
that

vi =Vi cos(ui ) (43)

where Vi is the maximum velocity. We will also modify the strategy of the evader to make use of
its higher maneuverability during the game as follows:

1. If the distance between the pursuer and the evader is greater than a certain amount, d, then
the control strategy for the evader is

ue= tan−1
(
ye− yp
xe−xp

)
−�e (44)

2. If the distance between the pursuer and the evader is smaller than d, then the control strategy
for the evader is

ue= (�p+�)−�e (45)

The distance d defined in this strategy is calculated as

d= Lp

tan(upmax )
(46)

where d is the same as the minimum turning radius of the pursuer, Rdpmin , defined by (16).
Equations (45) and (46) mean that if the pursuer approaches the evader and the distance between
them is equal to the minimum turning radius of the pursuer, then the evader makes use of its higher
maneuverability by turning to take the opposite direction of the pursuer.

Figure 7 and Table III show the input and the output parameters of the FLC after tuning
using the proposed QLFIS, respectively. Table IV shows the capture times for different initial
positions of the evader using the classical control strategy of the pursuer, the Q(�)-learning only,
the proposed QLFIS, and the technique proposed in [19]. In addition, the learning times for the
different techniques are also shown in this table. The results shown in Table IV agree with those
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Figure 7. MFs for the inputs after tuning using the proposed QLFIS:
(a) the input �p and (b) the input �̇p.

Table III. Fuzzy decision table after tuning using the proposed QLFIS.

�̇p

N Z P

�p N −1.2211 −0.4285 −0.6713
Z 0.0014 −0.0001 0.0422
P 0.5187 0.4481 1.3302

Table IV. Capture time, in seconds, for different evader initial positions and learning time, in seconds, for
the different techniques (case 2).

Evader initial position

(−7,5) (−4,−6) (3,5) (5,−4) Learning time

Classical control strategy 10.3 9.1 7.3 8.0 —
Q(�)-learning only 15.6 14.3 12.4 12.9 76.7
Technique proposed in [19] 12.4 11.3 9.1 9.8 323.2
Proposed QLFIS 10.6 9.3 7.4 8.1 136.6

shown in Table II. Figure 8 shows the paths of the pursuer and the evader when the proposed
QLFIS is used. From this figure we can see that the evader can first escape from the pursuer
by turning quickly, when the distance between them is equal to the minimum turning radius of
the pursuer. However, the pursuer can modify his path using its learned control strategy and can
successfully catch the evader.

Now, we will increase the complexity of the model by making both the pursuer and the evader
self-learn their control strategies simultaneously. The complexity in the learning process is that
each robot will try to find its control strategy based on the control strategy of the other robot
which, at the same time, is still learning.

Figure 9 and Table V show the input and the output parameters of the tuned FLC for the pursuer
using the proposed QLFIS. Figure 10 and Table VI show the input and the output parameters of
the tuned FLC for the evader using the proposed QLFIS.

To check the performance of the different techniques, we cannot use the capture time as a
measure, as we did in Table II; because in this game both the pursuer and the evader are learning,
hence we may find capture times that are smaller than those corresponding to the classical solution.
Of course that does not mean that the performance is better than the classical solution, but it means
that the evader does not learn well and as a result it is captured in a shorter time. Therefore, the
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Figure 8. Paths of the pursuer (ooo) and the evader (+++) using the proposed QLFIS.
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Figure 9. MFs for the inputs of the pursuer after tuning using the
proposed QLFIS: (a) the input �p and (b) the input �̇p.

Table V. Fuzzy decision table for the pursuer after tuning using the proposed QLFIS.

�̇p

N Z P

�p N −1.2990 −0.6134 −0.4064
Z −0.3726 −0.0097 0.3147
P 0.3223 0.5763 0.9906

measure that we use is the paths of both the pursuer and the evader instead of the capture time.
Figures 11–13 show the paths of the pursuer and the evader of the different techniques against the
classical control strategies of the pursuer and the evader.

We can see that the best performance is that of the proposed QLFIS. Table VII shows the
learning time for the different techniques. From this table we can see that the proposed QLFIS
still has the minimum learning time when compared with the technique proposed in [19]. Finally,
we can conclude that the proposed QLFIS still outperforms the technique proposed in [19] in both
performance and learning time.
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Figure 10. MFs for the inputs of the evader after tuning using the proposed
QLFIS: (a) the input �e and (b) the input �̇e.

Table VI. Fuzzy decision table for the evader after tuning using the proposed QLFIS.

�̇e

N Z P

�e N −1.4827 −0.4760 −0.0184
Z −0.5365 −0.0373 0.5500
P −0.0084 0.4747 1.1182
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Figure 11. Paths of the pursuer and the evader using the Q(�)-learning only (solid line)
against the classical strategies (dotted line).

8. CONCLUSION

In this paper, we proposed a novel technique to tune the input and the output parameters of an
FLC in which RL is combined with FIS as a function approximation to generalize the state and
the action spaces to the continuous case. The proposed technique is applied to three different
pursuit–evasion games. We start with a simple game in which we assume that the pursuer does
not know its control strategy while the evader plays a simple classical control strategy. However,
the pursuer can self-learn its control strategy by interaction with the evader. Then, we make use of
the advantage of maneuverability of the evader during the game. Finally, we apply the proposed
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Figure 12. Paths of the pursuer and the evader using the technique proposed in [19] (solid line) against
the classical strategies (dotted line).
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Figure 13. Paths of the pursuer and the evader using the proposed QLFIS (solid line) against
the classical strategies (dotted line).

Table VII. Learning time, in seconds, for the different techniques.

Learning time

Q(�)-learning only 62.8
Technique proposed in [19] 137.0
Proposed QLFIS 110.3

technique to a pursuit–evasion game in which both the pursuer and the evader do not know their
control strategies. In this case, the evader has no information on which to base a potential turning
action. Therefore, the evader cannot learn how or when to turn. However, in future work, we
will include position as an input to the FLC and then we hypothesize that the evader will then
learn how and when to turn. Computer simulation and the results show that the proposed QLFIS
technique outperforms the other techniques in performance when compared with the classical
control strategies and in the learning time, which is also an important factor especially in online
applications.
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